Streamlining the generation of an osteogenic graft by 3D culture of unprocessed bone marrow on ceramic scaffolds.

نویسندگان

  • Anindita Chatterjea
  • Auke J S Renard
  • Christel Jolink
  • Clemens A van Blitterswijk
  • Jan de Boer
چکیده

Mesenchymal stromal cells are present in very low numbers in the bone marrow, necessitating their selective expansion on tissue culture plastic prior to their use in tissue-engineering applications. MSC expansion is laborious, time consuming, unphysiological and not economical, thus calling for automated bioreactor-based strategies. We and others have shown that osteogenic grafts can be cultured in bioreactors by seeding either 2D-expanded cells or by direct seeding of the mononuclear fraction of bone marrow. To further streamline this protocol, we assessed in this study the possibility of seeding the cells onto porous calcium phosphate ceramics directly from unprocessed bone marrow. Using predetermined volumes of bone marrow from multiple human donors with different nucleated cell counts, we were able to grow a confluent cell sheath on the scaffold surface in 3 weeks. Cells of stromal, endothelial and haematopoietic origin were detected, in contrast to grafts grown from 2D expanded cells, where only stromal cells could be seen. Upon implantation in nude mice, similar quantities of bone tissue were generated as compared to that obtained by using the conventional number of culture expanded cells from the same donor. We conclude that human osteogenic grafts can be efficiently prepared by direct seeding of cells from unprocessed bone marrow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Generation of osteoinductive grafts by three-dimensional perfusion culture of human bone marrow cells into porous ceramic scaffolds

In this work, we investigated whether osteo-inductive constructs can be generated by isolationand expansion of sheep bone marrow stromal cells(BMSC) directly within three-dimensional (3D) ceramicscaffolds, bypassing the typical phase of monolayer (2D)expansion prior to scaffold loading. Nucleated cells fromsheep bonemarrowaspiratewere seeded into 3D ceramicscaffolds ...

متن کامل

Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer

    Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...

متن کامل

Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects

Wollastonite (CaSiO3; CSi) ceramic is a promising bioactive material for bone defect repair due to slightly fast degradation of its porous constructs in vivo. In our previous strategy some key features of CSi ceramic have been significantly improved by dilute magnesium doping for regulating mechanical properties and biodegradation. Here we demonstrate that 6 ~ 14% of Ca substituted by Mg in CSi...

متن کامل

Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots

Mesenchymal stem cells (MSCs), a stem cell population capable of multi‑lineage differentiation, bound to porous biomaterial scaffolds, are widely used for bone tissue regeneration. However, there is evidence to suggest that MSC collection from bone marrow and expansion in vitro may result in phenotypic changes including a loss of differentiation potential and cell senescence. The aim of the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of tissue engineering and regenerative medicine

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2012